博客
关于我
python机器学习ch02
阅读量:118 次
发布时间:2019-02-26

本文共 6587 字,大约阅读时间需要 21 分钟。

Python ????

????? - ??????????

??????Artificial Neuron??????????????????1950???????Perceptron???????????????Frank Rosenblatt?1958????

???????

?????????Perceptron Learning Rule????????????????????????????????????????

???????

Iris ???

Iris ???????????????3?????Iris-setosa?Iris-virginica?Iris-versicolor??????4????????????????????

?????

???Iris?????????

import matplotlib.pyplot as pltimport numpy as np# ???100???y = df.iloc[0:100, 4].valuesy = np.where(y == 'Iris-setosa', -1, 1)# ???????????X = df.iloc[0:100, [0, 2]].valuesplt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa')plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor')plt.xlabel('???? [cm]')plt.ylabel('???? [cm]')plt.legend(loc='upper left')plt.show()

???????

????

??????????????????

from IPython.display import Imageclass Perceptron(object):    def __init__(self, eta=0.01, n_iter=50, random_state=1):        self.eta = eta        self.n_iter = n_iter        self.random_state = random_state    def fit(self, X, y):        rgen = np.random.RandomState(self.random_state)        self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])        self.errors_ = []        for _ in range(self.n_iter):            errors = 0            for xi, target in zip(X, y):                update = self.eta * (target - self.predict(xi))                self.w_[1:] += update * xi                self.w_[0] += update                errors += int(update != 0.0)            self.errors_.append(errors)        return self    def net_input(self, X):        return np.dot(X, self.w_[1:]) + self.w_[0]    def predict(self, X):        return np.where(self.net_input(X) >= 0.0, 1, -1)ppn = Perceptron(eta=0.1, n_iter=10)ppn.fit(X, y)plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')plt.xlabel('Epochs')plt.ylabel('Number of updates')plt.show()

??????

???????????????

from matplotlib.colors import ListedColormapdef plot_decision_regions(X, y, classifier, resolution=0.02):    markers = ('s', 'x', 'o', '^', 'v')    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')    cmap = ListedColormap(colors[:len(np.unique(y))])    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)    Z = Z.reshape(xx1.shape)    plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)    plt.xlim(xx1.min(), xx1.max())    plt.ylim(xx2.min(), xx2.max())    for idx, cl in enumerate(np.unique(y)):        plt.scatter(X[y == cl, 0], X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black')    plt.xlabel('???? [cm]')    plt.ylabel('???? [cm]')    plt.legend(loc='upper left')    plt.tight_layout()    plt.show()

????????

????

??????????????Adaline?????????

class AdalineGD(object):    def __init__(self, eta=0.01, n_iter=50, random_state=1):        self.eta = eta        self.n_iter = n_iter        self.random_state = random_state    def fit(self, X, y):        rgen = np.random.RandomState(self.random_state)        self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])        self.cost_ = []        for i in range(self.n_iter):            net_input = self.net_input(X)            output = self.activation(net_input)            errors = (y - output)            self.w_[1:] += self.eta * X.T.dot(errors)            self.w_[0] += self.eta * errors.sum()            cost = (errors**2).sum() / 2.0            self.cost_.append(cost)        return self    def net_input(self, X):        return np.dot(X, self.w_[1:]) + self.w_[0]    def activation(self, X):        return X    def predict(self, X):        return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)plt.plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')plt.xlabel('Epochs')plt.ylabel('log(Sum-squared-error)')plt.set_title('Adaline - Learning rate 0.01')plt.show()

??????

?????Gradient Descent????????????????????????????Adaline????????

# ?????X_std = np.copy(X)X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()ada_gd = AdalineGD(n_iter=15, eta=0.01)ada_gd.fit(X_std, y)plot_decision_regions(X_std, y, classifier=ada_gd)plt.title('Adaline - Gradient Descent')plt.xlabel('???? [???]')plt.ylabel('???? [???]')plt.legend(loc='upper left')plt.tight_layout()plt.show()plt.plot(range(1, len(ada_gd.cost_) + 1), ada_gd.cost_, marker='o')plt.xlabel('Epochs')plt.ylabel('Sum-squared-error')plt.tight_layout()plt.show()

??????

???????Stochastic Gradient Descent???????????????????????????????????????Adaline????????

class AdalineSGD(object):    def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):        self.eta = eta        self.n_iter = n_iter        self.shuffle = shuffle        self.random_state = random_state    def fit(self, X, y):        self._initialize_weights(X.shape[1])        self.cost_ = []        for i in range(self.n_iter):            if self.shuffle:                X, y = self._shuffle(X, y)            cost = []            for xi, target in zip(X, y):                output = self.net_input(xi)                error = target - output                self.w_[1:] += self.eta * xi.dot(error)                self.w_[0] += self.eta * error                cost.append(0.5 * error**2)            avg_cost = sum(cost) / len(y)            self.cost_.append(avg_cost)        return self    def _initialize_weights(self, m):        self.rgen = np.random.RandomState(self.random_state)        self.w_ = self.rgen.normal(loc=0.0, scale=0.01, size=1 + m)        self.w_initialized = True    def _shuffle(self, X, y):        r = self.rgen.permutation(len(y))        return X[r], y[r]    def net_input(self, X):        return np.dot(X, self.w_[1:]) + self.w_[0]    def activation(self, X):        return X    def predict(self, X):        return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)ada_sgd = AdalineSGD(n_iter=15, eta=0.01, random_state=1)ada_sgd.fit(X_std, y)plot_decision_regions(X_std, y, classifier=ada_sgd)plt.title('Adaline - Stochastic Gradient Descent')plt.xlabel('???? [???]')plt.ylabel('???? [???]')plt.legend(loc='upper left')plt.tight_layout()plt.show()plt.plot(range(1, len(ada_sgd.cost_) + 1), ada_sgd.cost_, marker='o')plt.xlabel('Epochs')plt.ylabel('????')plt.tight_layout()plt.show()

??

????????????????????Python???????????????????????????Iris???????????????????????????????

转载地址:http://ccbu.baihongyu.com/

你可能感兴趣的文章
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>