博客
关于我
python机器学习ch02
阅读量:118 次
发布时间:2019-02-26

本文共 6740 字,大约阅读时间需要 22 分钟。

Python ????

????? - ??????????

??????Artificial Neuron??????????????????1950???????Perceptron???????????????Frank Rosenblatt?1958????

???????

?????????Perceptron Learning Rule????????????????????????????????????????

???????

Iris ???

Iris ???????????????3?????Iris-setosa?Iris-virginica?Iris-versicolor??????4????????????????????

?????

???Iris?????????

import matplotlib.pyplot as plt
import numpy as np
# ???100???
y = df.iloc[0:100, 4].values
y = np.where(y == 'Iris-setosa', -1, 1)
# ???????????
X = df.iloc[0:100, [0, 2]].values
plt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor')
plt.xlabel('???? [cm]')
plt.ylabel('???? [cm]')
plt.legend(loc='upper left')
plt.show()

???????

????

??????????????????

from IPython.display import Image
class Perceptron(object):
def __init__(self, eta=0.01, n_iter=50, random_state=1):
self.eta = eta
self.n_iter = n_iter
self.random_state = random_state
def fit(self, X, y):
rgen = np.random.RandomState(self.random_state)
self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
return np.where(self.net_input(X) >= 0.0, 1, -1)
ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y)
plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of updates')
plt.show()

??????

???????????????

from matplotlib.colors import ListedColormap
def plot_decision_regions(X, y, classifier, resolution=0.02):
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(X[y == cl, 0], X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black')
plt.xlabel('???? [cm]')
plt.ylabel('???? [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()

????????

????

??????????????Adaline?????????

class AdalineGD(object):
def __init__(self, eta=0.01, n_iter=50, random_state=1):
self.eta = eta
self.n_iter = n_iter
self.random_state = random_state
def fit(self, X, y):
rgen = np.random.RandomState(self.random_state)
self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])
self.cost_ = []
for i in range(self.n_iter):
net_input = self.net_input(X)
output = self.activation(net_input)
errors = (y - output)
self.w_[1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
cost = (errors**2).sum() / 2.0
self.cost_.append(cost)
return self
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
return X
def predict(self, X):
return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)
ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)
plt.plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
plt.xlabel('Epochs')
plt.ylabel('log(Sum-squared-error)')
plt.set_title('Adaline - Learning rate 0.01')
plt.show()

??????

?????Gradient Descent????????????????????????????Adaline????????

# ?????
X_std = np.copy(X)
X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()
ada_gd = AdalineGD(n_iter=15, eta=0.01)
ada_gd.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada_gd)
plt.title('Adaline - Gradient Descent')
plt.xlabel('???? [???]')
plt.ylabel('???? [???]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
plt.plot(range(1, len(ada_gd.cost_) + 1), ada_gd.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')
plt.tight_layout()
plt.show()

??????

???????Stochastic Gradient Descent???????????????????????????????????????Adaline????????

class AdalineSGD(object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
self.eta = eta
self.n_iter = n_iter
self.shuffle = shuffle
self.random_state = random_state
def fit(self, X, y):
self._initialize_weights(X.shape[1])
self.cost_ = []
for i in range(self.n_iter):
if self.shuffle:
X, y = self._shuffle(X, y)
cost = []
for xi, target in zip(X, y):
output = self.net_input(xi)
error = target - output
self.w_[1:] += self.eta * xi.dot(error)
self.w_[0] += self.eta * error
cost.append(0.5 * error**2)
avg_cost = sum(cost) / len(y)
self.cost_.append(avg_cost)
return self
def _initialize_weights(self, m):
self.rgen = np.random.RandomState(self.random_state)
self.w_ = self.rgen.normal(loc=0.0, scale=0.01, size=1 + m)
self.w_initialized = True
def _shuffle(self, X, y):
r = self.rgen.permutation(len(y))
return X[r], y[r]
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
return X
def predict(self, X):
return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)
ada_sgd = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada_sgd.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada_sgd)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('???? [???]')
plt.ylabel('???? [???]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
plt.plot(range(1, len(ada_sgd.cost_) + 1), ada_sgd.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('????')
plt.tight_layout()
plt.show()

??

????????????????????Python???????????????????????????Iris???????????????????????????????

转载地址:http://ccbu.baihongyu.com/

你可能感兴趣的文章
Nginx 负载均衡与权重配置解析
查看>>
Nginx 负载均衡详解
查看>>
nginx 配置 单页面应用的解决方案
查看>>
nginx 配置https(一)—— 自签名证书
查看>>
nginx 配置~~~本身就是一个静态资源的服务器
查看>>
Nginx 配置清单(一篇够用)
查看>>
Nginx 配置解析:从基础到高级应用指南
查看>>
nginx+php的搭建
查看>>
nginx+tomcat+memcached
查看>>
nginx+Tomcat性能监控
查看>>
nginx+uwsgi+django
查看>>
Nginx-http-flv-module流媒体服务器搭建+模拟推流+flv.js在前端html和Vue中播放HTTP-FLV视频流
查看>>
nginx-vts + prometheus 监控nginx
查看>>
Nginx下配置codeigniter框架方法
查看>>
Nginx之二:nginx.conf简单配置(参数详解)
查看>>
Nginx代理websocket配置(解决websocket异常断开连接tcp连接不断问题)
查看>>
Nginx代理初探
查看>>
nginx代理地图服务--离线部署地图服务(地图数据篇.4)
查看>>
Nginx代理外网映射
查看>>
Nginx代理模式下 log-format 获取客户端真实IP
查看>>